

Doc. Number:

 2017-01-11
 2016-12-30
 2016-12-29

 11:01:36 CST
 14:37:59 CST
 16:59:15 CST

NNOLUX 群創光電

PRODUCT SPECIFICATION

CONTENTS

1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	4
1.2 GENERAL SPECIFICATIONS	4
2. MECHANICAL SPECIFICATIONS	5
2.1 CONNECTOR TYPE	5
3. ABSOLUTE MAXIMUM RATINGS	6
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	6
3.2 ELECTRICAL ABSOLUTE RATINGS	
3.2.1 TFT LCD MODULE	
Operating Range	
4. ELECTRICAL SPECIFICATIONS	
4.1 FUNCTION BLOCK DIAGRAM	
4.2 INTERFACE CONNECTIONS	
4. 3 ELECTRICAL CHARACTERISTICS	9
4.3.1 LCD ELETRONICS SPECIFICATION	9
4.3.2 LED CONVERTER SPECIFICATION	
4.3.3 BACKLIGHT UNIT	13
4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION	
4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION	14
4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS	
4 5 DISPLAY TIMING SPECIFICATIONS	16
A 6 POWER ON/OFE SEQUENCE	17
5. OPTICAL CHARACTERISTICS 5.1 TEST CONDITIONS 5.2 OPTICAL SPECIFICATIONS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	20
6. RELIABILITY TEST ITEM	24
7. PACKING	25
7.1 MODULE LABEL	
7.2 DELL Carton LABEL	
X20	
7.3 CARTON	27
7.4 PALLET	
7.5 UN-PACKAGING METHOD	29
8. PRECAUTIONS	
8.1 HANDLING PRECAUTIONS	
8.2 STORAGE PRECAUTIONS	30
8.3 OPERATION PRECAUTIONS	
Appendix. EDID DATA STRUCTURE	
Appendix. OUTLINE DRAWING	34

Appendix. SYSTEM COVER DESIGN GUIDANCE	38
Appendix. LCD MODULE HANDLING MANUAL	45

Version	Date	Page	Description
0.0	30, 09, 2016	All	Tentative Spec.Ver0.0 was first released.
1.0	27, 12, 2016	All	Preliminary Spec.Ver0.0 was first released.
		®	REVISION HISTORY

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N133HCE-EAA is a 13.3" (13.3" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 30 pins eDP interface. This module supports 1920 x 1080 FHD mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction.

1.2 GENERAL SPECIFICATIONS

Item	Specification	pecification				
Screen Size	13.3" diagonal	I3.3" diagonal				
Driver Element	a-si TFT active matrix	a-si TFT active matrix				
Pixel Number	1920 x R.G.B. x 1080	920 x R.G.B. x 1080				
Pixel Pitch	0.1529 (H) x 0.1529 (V)	.1529 (H) x 0.1529 (V)				
Pixel Arrangement	RGB vertical stripe		-	-		
Display Colors	262,144		color	-		
Transmissive Mode	Normally Black		-	AO		
Surface Treatment	Hard coating (3H), AG		-	6		
Luminance, White	220		Cd/m2	0.		
Power Consumption	Total (3.05)W (Max.)@cell (0.75)W	(Max.), BL (2.30)W (Max.)	(1)		

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas BLACK pattern is displayed.

註解 [01]: Dell request the Max. power of white/black/R/G/B/mosaic pattern

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
Glass	Thickness		0.4		mm	
Polarizer	Thickness		0.135		mm	
Module Size	Horizontal (H)	304.85	305.35	305.85	mm	
	Vertical (V) w/o PCB and Hinge	177.61	178.11	178.61	mm	
	Vertical (V) with PCB and Hinge	192.95	193.45	193.95	mm	(1)
	Thickness (T)	-	2.7	2.85	mm	(2)
	Thickness (T) (PCBA with Mylar)	H	2.94	3.09	mm	
Active Area	Horizontal	293.66	293.76	293.86	mm	
Active Area		mm				
\	Neight	-	245	260	g	

2.1 CONNECTOR TYPE

 Weight
 245
 260
 g

 Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

 Note (2) Dimensions are measured by caliper.
 Connector Part No.: IPEX-20455-030E-12 User's connector Part No: IPEX-20453-030T-03

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

註解 [02]: Dell request to mark the thickness of POL and glass on 6/27

註解 [03]: Must fill thickness of sponge, if u add sponge for pooling issue

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Svmbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Unit		
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	

Note (1) (a) 90 %RH Max. (Ta < 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta < 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note
	e jinib or	Min.	Max.	01m	Noto
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)
Converter Input Voltage	LED_VCCS	-0.3	(26)	V	(1)
Converter Control Signal Voltage	LED_PWM,	-0.3	(5)	V	(1)
Converter Control Signal Voltage	LED_EN	-0.3	(5)	V	(1)

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2 INTERFACE CONNECTIONS

PIN ASS	GINMENT		SE
Pin	Symbol	Description	mark
1	CABC_EN	CABC Enable Input	
2	H_GND	High Speed Ground	
3	ML1-	Complement Signal-Lane 1	
4	ML1+	True Signal-Main Lane 1	
5	H_GND	High Speed Ground	
6	ML0-	Complement Signal-Lane 0	
7	ML0+	True Signal-Main Lane 0	
8	H_GND	High Speed Ground	
9	AUX+	True Signal-Auxiliary Channel	
10	AUX-	Complement Signal-Auxiliary Channel	
11	H_GND	High Speed Ground	
12	VCCS	Power Supply +3.3 V (typical)	
13	VCCS	Power Supply +3.3 V (typical)	
14	BIST_EN	Panel Built In Self Test Enable	
15	GND	Ground	
16	GND	Ground	
17	HPD	Hot Plug Detect	
18	BL_GND	BL Ground	
19	BL_GND	BL Ground	
20	BL_GND	BL Ground	
21	BL_GND	BL Ground	
22	LED_EN	BL_Enable Signal of LED Converter	
23	LED_PWM	PWM Dimming Control Signal of LED Converter	
24	NC	No Connection (Reserved for LCD test)	
25	NC	No Connection (Reserved for LCD test)	

26	LED_VCCS	BL Power	(Support 5.0 ~ 21V)
27	LED_VCCS	BL Power	(Support 5.0 ~ 21V)
28	LED_VCCS	BL Power	(Support 5.0 ~ 21V)
29	LED_VCCS	BL Power	(Support 5.0 ~ 21V)
30	NC	No Connection (Reserved for LCD test)	

Note (1) The first pixel is odd as shown in the following figure.

Note (2) The setting of CABC function and BIST function are as follows.

4. 3 ELECTRICAL CHARACTERISTICS **4.3.1 LCD ELETRONICS SPECIFICATION**

Parameter		Symbol	Value			Unit	Note	
		Symbol	Min.	Тур.	Max.	Onit	NOLE	
Power Supply Voltage		VCCS	3.0	3.3	3.6	V	(1)	
חמח	High Level		2.25	-	2.75	V	(5)	
HPD	Low Level		0	-	0.4	V	(5)	
HPD Impedance		R _{HPD}	30K			ohm	(4)	
Ripple Voltage		V _{RP}	-	50	-	mV	(1)	
	High Level	VIHCABC	(2.3)	-	(3.6)	V	(4)	
CABC_EN Input Voltage	Low Level	VILCABC	(0)	-	(0.5)	V V	(4)	
CABC_EN Impedance		R _{CABC_EN}	30K	-	-	ohm	(4)	λ
Inrush Current		I _{RUSH}	-	-	1.5	A	(1),(2)	M
Power Supply Current	Mosaic	lcc		(203)	(226)	mA	(3)a	r:
	Black			(194)	(220)	mA	(3)	

Note (1) The ambient temperature is Ta = 25 ± 2 °C.

Note (2) I_{RUSH}: the maximum current when VCCS is rising

VCCS rising time is 0.5ms

8 purchase to Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 ± 2 °C DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. Mosaic Pattern

Active Area

- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.
- Note (5) When a source detects a low-going HPD pulse, it must be regarded as a HPD event. Thus, the source must read the link / sink status field or receiver capability field of the DPCD and take corrective action

Parameter		Sumbel	Value			1.1	Nete
		Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input Pow	ver Supply Voltage	LED_Vccs	(5.0)	(12.0)	(21.0)	V	
Converter Inrush Cu	irrent	ILED _{RUSH}	-	-	1.5	А	(1)
LED EN Control	Backlight On		(2.2)	-	(5.0)	V	(4)
Level	Backlight Off		0	-	(0.6)	V	(4)
LED_EN Impedance		R _{LED_EN}	30K	-	-	ohm	(4)
DMMA Question I I avail	PWM High Level		(2.2)	-	5	v	(4)
PWM Control Level	PWM Low Level		0	-	(0.6)	V	(4)
PWM Impedance		R _{PWM}	30K	-	-	ohm	(4)
PWM Control Duty F	Ratio		(5)	-	100	%	(5)
PWM Control Permissive Ripple Voltage		VPWM_pp	-	-	100	mV	2
PWM Control Frequ	ency	f _{PWM}	(190)	-	(2K)	Hz	(2)
LED Power Current	LED_VCCS =Typ.	ILED	(146)	(180)	(192)	mA	(3)

4.3.2 LED CONVERTER SPECIFICATION

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 ± 2 °C, f_{PWM}

= 200 Hz, Duty=100%

InnoLux

群創光電

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency fPWM should be in the range

$$(N+0.33) * f \le f_{PWM} \le (N+0.66) *$$

N : Integer $(N \ge 3)$
f : Frame rate

- Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.
- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED_EN (If it exists). The rest pull down impedances of other signals (eg. HPD, PWM ...) are in the same concept.

Note (5) If the cycle-to-cycle difference of PWM duty exceeds 0.1%, especially when the PWM duty is low, slight brightness change might be observed.

4.3.3 BACKLIGHT UNIT

			± 2 ℃				
Devenueter	Currente el		Value			Niete]
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
LED Light Bar Power Supply Voltage	VL	23.4	25.2	27	V	(1)(2)(Duty100%)	
LED Light Bar Power Supply Current	١L		64.5		mA	(2)	
Power Consumption	PL	-	1.6254	1.7415	W	-(3)	
LED Life Time	L _{BL}	15000	-	-	Hrs	(4)]

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

the adaptive bor Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ±2 °C and J_L = 21.5 mA(Per EA) until the brightness becomes \leq 50% of its original value.

4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION

4.4.1 ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(4)
AUX AC Coupling Capacitor	C_Aux_Source	75		200	nF	(2)
Main Link AC Coupling Capacitor	C_ML_Source	75		200	nF	(3)

Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are

V_{D+} Vcm

V_{D-}

0V

many optional items described in eDP1.2. If some optional item is requested, please contact us.

Vid

(2) Recommended eDP AUX Channel topology is as below and the AUX AC Coupling Capacitor (C_Aux_Source) should be placed on the source device.

(3) Recommended Main Link Channel topology is as below and the Main Link AC Coupling Capacitor (C_ML_Source) should be placed on the source device.

(4) The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

				_					[Sign	al								
	Color			R			1			Gre						Bl		1		\square
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0	
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	-0	0	A
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1_1	
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:			:	
Of	:	:	:	:	:	:	:	:	1	1	: \		:	:	:	:	r (2)	:	:	
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Red(63)	1	1	1	1	1	1	0	-0	0	0	0	0	0	0	0	0	0	0	
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
Scale	:	:	:	:	:		:	:	:	:	:	:		:	:	:	:	:	:	
Of	:	:	:	:	:	÷	:	:		:	:	0	Le i	:	:	:	:	:	:	
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0	
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
Scale			:		:	:	:	:		:	:	:	:	:	:	:	:	:	:	
Of		/	:	\sim	$\langle \cdot \rangle$:	:	:		:	:	:	:	:	:	:	:	:	:	
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1	
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Refresh Rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	(152.08)	(152.84)	(153.6)	MHz	-
	Vertical Total Time	ΤV	(1128)	(1132)	(1136)	TH	-
	Vertical Active Display Period	TVD	(1080)	(1080)	(1080)	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	(52)	TV-TVD	TH	
DE	Horizontal Total Time	TH	(2230)	(2250)	(2270)	Тс	-
	Horizontal Active Display Period	THD	(1920)	(1920)	(1920)	Тс	-
	Horizontal Active Blanking Period	THB	TH-THB	(330)	ТН-ТНВ	Тс	-
Refresh rate	e 48Hz (Power Saving Mode)						
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	(121.65)	(122.26)	(122.87)	MHz	(1)
	Vertical Total Time	TV 💧	(1128)	(1132)	(1136)	ΤΗ	(1)
	Vertical Active Display Period	TVD	(1080)	(1080)	(1080)	тн	(1)
DE	Vertical Active Blanking Period	TVB	TV-TVD	(52)	TV-TVD	TH	(1)
DE	Horizontal Total Time	ТН	(2230)	(2250)	(2270)	Тс	(1)
	Horizontal Active Display Period	THD	(1920)	(1920)	(1920)	Тс	(1)
	Horizontal Active Blanking Period	ТНВ	TH-THB	(330)	TH-THB	Тс	(1)

Note (1) The panel can operate at 60Hz normal mode and power saving mode, respectively. All reliability tests are based on specific timing of 60Hz refresh rate. We can only assure the panel's electrical function at

Power Off Restart Power On t11 90% 90% -Power Supply 10% 10% 10% 0Vfor LCD, VCCS t12 t10 t2 -eDP Display Black Video Video from Source Black Video t3 -HPD from Sink 0V -AUX Channel AUX Channel Operational se t7 t4 Link Valid Video Data -Main Link Data Idle or off Idle Training t9 t8 t5 t6 90% 90% - Power Supply for LED Converter, 10% 10% 0V LED_VCCS tc t_{D} - LED Converter Dimming Signal, 0V LED_PWM tE t_F - LED Converter Enable Signal, LED_EN 0V

4.6 POWER ON/OFF SEQUENCE

Parameter	Description	Reqd. By	Val Min	ue Max	Unit	Notes
t1	Power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t2	Delay from LCD,VCCS to black video generation	Sink	0	200	ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	0	-	ms	Allows for Source to read Link capability an initialize
t5	Link training duration	Source	0	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	0	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	80		ms	Source must assure display video is stable *: Recommended by INX. To avoid garbage image.
19	Delay from backlight off to end of valid video data	Source	50	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no val video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sir will automatically display Black Video. (See Notes: 2 and 3 below) *: Recommended by INX. To avoid garbage image.
	Delay from end of valid video		_	500		Black video will be displayed after
t10	data from Source to power off VCCS power rail fall time, 90%	Source	0	500	ms	receiving idle or off signals from Source

Timing Specifications

t12	VCCS Power off time	Source	500	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-
tc	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
t _D	Delay from LED dimming signal to LED power falling	Source	1	-	ms	-
t _E	Delay from LED dimming signal to LED enable signal	Source	(0)	-	ms	-
t _F	Delay from LED enable signal to LED dimming signal	Source	(0)	-	ms	-

Note (1) Please don't plug or unplug the interface cable when system is turned on. Before LCD_VCCS and LED_VCCS are ready, it is recommended to pull down the backlight control signals

Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:

- Upon LCDVCC power-on (within T2 max)

- When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)

Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.

Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	O°				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{cc}	3.3	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
LED Light Bar Input Current	ΙL	64.5	mA				

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

5.2 OF HOAL								
Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		500	700		-	(2),(5),(7)
Deenene e Time		T _R		-	14	19	ms	
Response Time		T _F		-	11	16	ms	(3),(7)
Average Lumina	ance of White	LAVE		187	220		cd/m ²	(4),(6),(7)
	Red	Rx			0.590		0 -	
	Reu	Ry	0 -00 0 -00		0.350		-	
	Green	Gx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.330		-	
Calar	Green	Gy	Viewing Normal Angle	Тур –	0.555	Typ +	-	(1) (7)
Color Chromaticity	Blue	Bx		0.03	0.153	0.03	-	(1),(7)
Chilomaticity	Blue	By		C C	0.119		-	
	White	Wx			0.313		-	
	white	Wy			0.329		-	
	Color Gamut	C.G.		42	45	-		(8)
		θ_{x} +		80	85			
	Horizontal	θ _x -		80	85	-	Dee	(4) (5) (7)
Viewing Angle		θ_{Y} +	CR≥10	80	85	-	Deg.	(1),(5),(7)
	Vertical	θγ-		80	85	-		
White Variation	of 5 and 13	δW _{5p}	θ _x =0°, θ _Y =0°	80	90	-	%	(5) (6)(7)
Points		δW _{13p}	θ _x =0°, θ _Y =0°	65	75	-	%	(5),(6)(7)

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

INNOLUX 群創光電

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (7) The listed optical specifications refer to the initial value of manufacture, but the condition o the specifications after long-term operation will not be warranted.

Note (8) Definition of color gamut (C.G%):

C.G%= R G B / R0 G0 B0,*100%

R0, G0, B0 : color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B : color coordinates of module on 63 gray levels of red, green, and blue, respectively.

R0 G0 B0 : area of triangle defined by R0, G0, B0

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note	
High Temperature Storage Test	60°C, 240 hours		
Low Temperature Storage Test	-20°C, 240 hours		
Thermal Shock Storage Test	-20°C, 0.5hour \longleftrightarrow 60°C , 0.5hour; 100 cycles, 1hour/cycle		
High Temperature Operation Test	50°C, 240 hours	(1) (2)	
Low Temperature Operation Test	0°C, 240 hours		
High Temperature & High Humidity Operation Test	50°C, 80% RH, 240 hours		
ESD Test (Operation)	150pF, 330 Ω , 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)	6
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)	
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)	

Note (1) criteria : Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

BUILD PHASE	REVISION
SST (WS)	X00, X01, X02, X09
PT (ES)	X10, X11, X12, X19
ST (CS)	X20, X21, X23, X29
XB (MP)	A00, A01, A02, A99

7.2 DELL Carton LABEL

Dell carton label contains information as below:

7.3 CARTON (1)Box Dimensions : 540(L)*450(W)*320(H) (2)40 Modules/Carton op "2" layer for empty tray LCD Module(22trays) by Tape bac +12 (for DELL) (for DELL) Bannichasse Supphy 8 DEL Rut Figure. 7-1 Packing method

7.4 PALLET

7.5 UN-PACKAGING METHOD

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

		lug & Display and FPDI standaus.		
Byte # (decimal)	Byte # (hex)	Field Name and Comments	Value (hex)	Value (binary)
0) O	Header	00	00000000
1	1	Header	FF	11111111
2	2	Header	FF	11111111
3	3	Header	FF	11111111
4	4	Header	FF	11111111
5	5	Header	FF	11111111
6	6	Header	FF	11111111
7	7	Header	00	00000000
8	8	ID system manufacturer name ("CMN")	0D	00001101
9	9	ID system manufacturer name	AE	10101110
10	0A	ID system Product Code (LSB)	75	01110101
11	0B	ID system Product Code (MSB)	13	00010011
12	0C	32-bit serial # Unused(01h for VESA, 00h for SPWG)	00	00000000
13	0D	32-bit serial # Unused(01h for VESA, 00h for SPWG)	00	00000000
14	0E	32-bit serial # Unused(01h for VESA, 00h for SPWG)	00	00000000
15	0F	32-bit serial # Unused(01h for VESA, 00h for SPWG)	00	00000000
16	10	Week of manufacture (fixed week code)	27	00100111
17	11	Year of manufacture (fixed year code)	1A	00011010
18	12	Version=1	01	00000001
19	13	Revision=4	04	00000100
20	14	Vedio Input Definition	95	10010101
21	15	Active area horizontal ("29.376cm")	1D	00011101
22	16	Active area vertical ("16.524cm")	11	00010001
23	17	Displa <mark>y Gamma</mark> (Gamma = "2.2")	78	01111000
24	18	Feature support ("RGB, Non-continous")	02	00000010
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	28	00101000
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	65	01100101
27	1B	Rx=0.590	97	10010111
28	1C	Ry=0.350	59	01011001
29	1D	Gx=0.330	54	01010100
30	1E	Gy=0.555	8E	10001110
31	1F	Bx=0.153	27	00100111
32	20	By=0.119	1E	00011110
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	No manufacturer's specific timing	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
41	29	Standard timing ID # 2	01	00000001

	-		-		
42	2A	Standard timing ID # 3	01	00000001	
43	2B	Standard timing ID # 3	01	00000001	
44	2C	Standard timing ID # 4	01	00000001	
45	2D	Standard timing ID # 4	01	00000001	
46	2E	Standard timing ID # 5	01	0000001	
47	2F	Standard timing ID # 5	01	0000001	l
48	30	Standard timing ID # 6	01	0000001	l
49	31	Standard timing ID # 6	01	0000001	
50	32	Standard timing ID # 7	01	0000001	
51	33	Standard timing ID # 7	01	0000001	l
52	34	Standard timing ID # 8	01	00000001	
53	35	Standard timing ID # 8	01	00000001	
54	36	Detailed timing description # 1 Pixel clock ("152.84MHz")	B4	10110100	
55	37	# 1 Pixel clock (hex LSB first)	3B	00111011	
56	38	# 1 H active ("1920")	80	10000000	
57	39	# 1 H blank ("330")	4A	01001010	
58	3A	# 1 H active : H blank	71	01110001	
59	3B	# 1 V active ("1080")	38	00111000	
60	3C	# 1 V blank ("52")	34	00110100	
61	3D	# 1 V active : V blank	40	01000000	
62	3E	# 1 H sync offset ("48")	30	00110000	
63	3F	# 1 H sync pulse width ("32")	20	00100000	
64	40	# 1 V sync offset : V sync pulse width ("3 : 6")	36	00110110	
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000	
66	42	# 1 H image size ("293 mm")	25	00100101	
67	43	# 1 V image size ("165 mm")	A5	10100101	
68	44	# 1 H image size : V image size	10	00010000	
69	45	# 1 H boarder ("0")	00	00000000	
70	46	# 1 V boarder ("0")	00	00000000	
71	47	Non-interlaced, Normal Display, Digital separate, Positive Hsync, Negative Vsync	1A	00011010	
72	48	Detailed timing description # 1 Pixel clock ("122.26MHz")	C2	11000010	
73	49	# 2 Pixel clock (hex LSB first)	2F	00101111	
74	4A	# 2 H active ("1920")	80	1000000	
75	4B	# 2 H blank ("330")	4A	01001010	
76	4C	# 2 H active : H blank	71	01110001	
77	4D	# 2 V active ("1080")	38	00111000	
78	4E	# 2 V blank ("52")	34	00110100	
79	4F	# 2 V active : V blank	40	01000000	
80	50	# 2 H sync offset ("48")	30	00110000	
81	51	# 2 H sync pulse width ("32")	20	00100000	
82	52	# 2 V sync offset : V sync pulse width ("3 : 6")	36	00110110	
83	53	# 2 H sync offset : H sync pulse width : V sync offset : V sync width	00	00000000	
84	54	# 2 H image size ("293 mm")	25	00100101	
85	55	# 2 V image size ("165 mm")	A5	10100101	
86	56	# 2 H image size : V image size	10	00010000	
87	57	# 2 H boarder ("0")	00	00000000	

88	58	# 2 V boarder ("0")	00	00000000
89	59	Non-interlaced, Normal Display, Digital separate, Positive Hsync, Negative Vsync	1A	00011010
90	5A	Flag	00	00000000
91	5B	Flag	00	00000000
92	5C	Flag	00	00000000
93	5D	Data Type Tag: Alphanumeric Data String (ASCII)	FE	11111110
94	5E	Flag	00	00000000
95	5F	Dell P/N 1st Character "D"	44	01000100
96	60	Dell P/N 2nd Character "G"	47	01000111
97	61	Dell P/N 3rd Character "7"	37	00110111
98	62	Dell P/N 4th Character "J"	4A	01001010
99	63	Dell P/N 5th Character "1"	31	00110001
100	64	EDID Revision	00	00000000
101	65	Manufacturer P/N "1"	31	00110001
102	66	Manufacturer P/N "3"	33	00110011
103	67	Manufacturer P/N "3"	33	00110011
104	68	Manufacturer P/N "H"	48	01001000
105	69	Manufacturer P/N "C"	43	01000011
106	6A	Manufacturer P/N "E"	45 🎤	01000101
107	6B	New line character indicates end of ASCII string	0A	00001010
108	6C	Flag	00	00000000
109	6D	Flag	00	00000000
110	6E	Flag	00	00000000
111	6F	Data Type Tag: Manufacturer Specified Data 00	00	00000000
112	70	Flag	00	00000000
113	71	Color Management	00	00000000
114	72	Panel Type and Revision	41	01000001
115	73	Frame Rate	31	00110001
116	74	Light Controller Interface and Maximum Luminance	96	10010110
117	75	Front Surface / Polarizer and Pixel Structure	00	00000000
118	76	Multi-Media Features	10	00010000
119	77	Multi-Media Features	00	00000000
120	78	Special Features	00	00000000
121	79	Special Features	0A	00001010
122	7A	Special Features	01	00000001
123	7B	New line character indicates end of ASCII string	0A	00001010
124	7C	Padding with "Blank" character	20	00100000
125	7D	Padding with "Blank" character	20	00100000
126	7E	No extension	00	00000000

NNOLUX 群創光電

Note. Dimensions measuring instruments as below,

1. Length/ Width/Thickness	: Caliper
----------------------------	-----------

2. Height	: Height gauge
3. Flatness	: Feeler gauge

註解 [04]: ME request on 6/10'14

註解 [05]: ME will update latest ver. of Mechanical Checklist for Notebook System Cover Design in PDM (Document No. DN0312627)

註解 [06]:ME will update latest ver. of LCD module handling manual in PDM (Document No. DN0312627)

NNOLUX 群創光電

INNOLUX 群創光電

PRODUCT SPECIFICATION

